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1. Introduction 

There are several approximations to being free for abelian groups. (From here on 

by g r o u p  we will mean abelian group.) For some of these notions such as being 

hereditarily separable or being a Whitehead group it is well known that it is in- 

dependent from the usual axioms of set theory whether or not every such group 

is free. (A group is separab le  if every finite set is contained in a free subgroup 

which is a direct summand and h e r e d i t a r i l y  separab le  if every subgroup is 

separable. A group A is a W h i t e h e a d  g roup  if Ext(A, Z) = 0. Any Whitehead 

group is hereditarily separable.) On the other hand it can be shown in ZFC 

that  there are non-free groups of cardinality R1 which are Rl-separable (i.e., any 

countable subset is contained in free countable direct summand). A somewhat 

mysterious class is the class of coseparable groups (to be defined later). Any 

hereditarily separable group is coseparable while every coseparable group is sep- 

arable. So this class lies between those which exhibit independence phenomena 

and those for which we have absolute existence results. 

Early on Chase [2] showed that CH implied the existence of a non-free cosepa- 

rable group of cardinality RI. Later Sageev-Shelah [7] and Eklof-Huber [3] elab- 

orated this result to construct non-free groups of cardinality R1 with specified 

p-rank of Ext (as p ranges over the primes). Their proofs continued to use CH. 

This reliance on CH was in itself unusual. In the cases where the existence of a 

group was known to be independent, the existence was also independent of CH. 

As well many results in abelian group theory that follow from CH can also be 

shown to follow from weak CH, i.e., 2 ~~ < 2 ~1 . In this paper we will show that 

the use of CH is necessary. Namely we will show that is consistent with weak 

CH (assuming as always the consistency of ZFC) that every coseparable group of 

cardinality R1 is free. Furthermore if it is consistent that a supercompact cardi- 

nal exists then it is consistent (with weak CH if desired) that every coseparable 

group is free. A reference for the facts mentioned above and the ones we will 

quote below is [4]. 

A group is Rl-free if every countable subgroup is free and, more generally, for 

an uncountable cardinal ~ a group is ~-free if every subgroup of cardinality less 

than ~ is free. A group A is coseparab le  if it is Rl-free and every subgroup B 

such that A/B is finitely generated contains a direct summand C of A so that 

A/C is finitely generated. There are several equivalents to being coseparable. The 

one we will use throughout is that a group A is coseparable if and only if Ext(A, Z) 
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is torsion-free or equivalently Extp(A, Z) = 0 for all primes p. Here Extp(A, Z) 

denotes the subgroup of Ext(A, Z) consisting of those elements whose order is a 

power of p. There is a useful characterization of when Extr(A , Z) = 0. For a 

group A and a prime p, Extp(A, Z) = 0 if and only if for every homomorpkism 

h: A ~ Z/pZ there is a homomorphism h: A ~ Z (called a l i f t ing of h) so that 

h/p = h. (If f is a homomorphism to Z, then f / p  denotes the composition of f 

with the natural map to Z/pZ.)  

Although (at least in some models of set theory) a subgroup of a coseparable 

group is not necessarily coseparable, every pure subgroup of a coseparable group 

is coseparable. The following proposition sums up the discussion. 

PROPOSITION 1: 

1. If A is the minimal cardinality of a non-free coseparable group then every 

coseparable group is A-free. 

2. Any homomorphism from a subgroup H of K to Z/pZ can be extended to 

a homomorphism from K to Z/pZ provided that H is p-pure in K, i.e., for 

any a 6 H, a 6 pH if and only if  a 6 pK. 

2.  P r o o f s  

Most of our set theoretic notation will be standard. If ir is an infinite cardinal 

we will use Fn(I ,  J, to) to denote the set of partial functions from I to J whose 

domain have cardinality less than to. The poset Fn(Ir 2,~) is usually called the 

poser (or forcing) for adding ~ Cohen reals. As is customary we will say that 

(at least) tr Cohen reals are added to a set theoretic universe if we force with 

Fn(tc,2,ta) (or Fn(p, 2,w) for some # >_ to) The principal lemma we will use is 

the following. 

LEMMA 2: Suppose tr is a cardinal and P = Fn(~,2,o~). Then P forces that 

every coseparable group of cardinality less than a is free. 

This lemma has as immediate consequences our main theorems. 

THEOREM 3: It is consistent with both 2 ~~ < 2 ~1 and 2 ~~ = 2 al, that every 

coseparable group of cardinality RI is free. 

THEOREM 4: If it is consistent that a supercompact cardinal exists then it is 

consistent with both 2 ~~ < 2 ~1 and 2 ~~ = 2 ~I , that every coseparable group is 

free. 
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Proof: Shelah (see [1]) has shown that if tr is a supercompact cardinal and tr 

Cohen reals are added to the universe then every n-free group is free. So af- 

ter adding tr Cohen reals we have, by Lemma 2 and Proposition 1, that every 

coseparable group is n-free and hence free. As well we have that 2 ~~ = ~ = 2 s~ . 

For the other part of the theorem, it suffices to know that the consistency of a 

supercompact cardinal implies the consistency of a cardinal tr such that ~ < 2 ~1 

and if ~ Cohen reals are added to the universe then every to-free group is free. 

This result is proved in Corollary 20. | 

We will also show that the use of some large cardinal is necessary. (The consis- 

tency of the statement "every coseparable group is free" implies the consistency 

of the existence of measurable cardinals.) Also we will show by a more com- 

plicated forcing that assuming the consistency of a supercompact cardinal it is 

consistent that every coseparable group is free and the continuum is as small as 

possible, i.e., R2. 

There are various cases to consider in the proof of the main lemma. At various 

times we will have to consider the case of a free group F and its p-adic completion. 

Fix a set of free generators X for F.  Then any element y of the p-adie completion 

can be written uniquely as ~ p " y , ,  where each !/,, is a linear combination of 

elements of X such that all the coefficients are between 0 and p - 1 (inclusive). 

If we have fixed a set of free generators then given V,//n will always denote the 

element above. First we prove two easy and useful propositions. 

PROPOSITION 5: Suppose A is contained in the p-adic completion of a free 

group F and X is a set of free generators for F. Assume h E Horn(A, Z/pZ)  and 

h is a lifting to Z. I f  z, y E A, h(z) = h(y) and n is the least element so that 

z .  # y .  then h ( z . )  = h(y,,). 

Proof." By subtracting ~"]~i<. P sxi from each side and then dividing by p . ,  we 

have h(~"~,<m<oo p ^ rn-nZm) = h(~-~,<m<oop ^ m--,ym). So h ( z , )  -- h ( y , ) m o d p  

| 

PROPOSITION 6: Let A, F and X be as above. Assume that there is a finite 

set Y of elements which are not divisible by p and a set B C A so that IBI > IFI 
and for all z # y E B,  x,, - Yn E Y ,  where n is the ]east na tu ra /number  so that 

z .  # y . .  Then Extp(A, Z) # 0. 
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Proof: Suppose not. For each a E Y, choose ha so that ha(a) ~ O. Let ha be a 

lifting of ha. Choose B'  C B so that IB'I > IFI and for all z, y �9 B'  and a �9 Y, 

h~(~) = h,(y) .  By the last proposition for x r y �9 B'  and a �9 Y, x,, - y ,  r a, 

where n is the least natural number so that 2 ,  r y , .  This contradicts the choice 

of Y. I 

We will have occasion to use the following ad hoc definition. If A is an abelian 

group a function h: A --) Z/pT. is a counterexample to the vanishing of Extp(A, Z) 

if h has no lifting to a map to 7.. 

THEOREM 7: Suppose A is contained in the p-adic completion of a free group 

F and IAI > IFI. Then after adding at least IFI Cohen rea/s to the universe 

Extp(A, Z) # 0. 

Proof'. By splitting the forcing into two parts (and adding IFI Cohen reals at 

the second step) we can assume that exactly IFI Cohen reals are added. Let X 

be a set of free generators of F and let h be a Cohen generic function from X 

to p. More exactly, we can assume the Cohen reals are added by forcing with 

Fn(X,p,w).  Let h be a generic set for this forcing and we will also let h denote the 

unique extension to a homomorphism from A to Z/pZ. (There are many other 

schemes to produce a generic function.) Suppose h is forced (by some condition) 

to be a lifting of h. For each a �9 A, choose a condition qa and an integer m~ so 

that q~ iF h(a) = m, .  Since IAI > max{IXI, IZl}, there is a condition q so that 

for some m and some B of cardinality greater than IFh q IV = m, for 

z �9 B. Let X0 be the domain of q and let Y be the set of linear combinations of 

elements of X0 whose coefficients are between - p  + 1 and p - 1. 

Suppose first that for all x, y �9 B, Xn - yn �9 Y where n is the least natural 

number such that xn r yn. Then we are done by Proposition 6. So we can 

choose x, y �9 B so that this is not the case. Choose now ql extending q so that 

ql I)- h(zn - yn) ~ O. This contradicts Proposition 5. So no such lifting exists. 
| 

The non-existence of a group A which is coseparable and satisfies the hypothe- 

ses of the theorem is not a consequence of ZFC. It is consistent that there is a 

Whitehead group of cardinality R1 which is contained in the 2-adic completion of 

a countable set [9]. In fact the non-free coseparable group constructed by Chase 

[2], assuming CH, is contained in the Z-adic completion of a countable set. 

We can strengthen the previous theorem to allow us to calculate the p-rank. 
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THEOREM 8: Suppose A is contained in the p-adic completion of a free group 

F and IAI > IFI. Then if A > IFI and A Cohen reals are added to the universe, 

IExt/A, Z)I >__ A. 

Proof." There are two cases to consider. First assume that we have a collection 

{Yn: n < w} of disjoint finite subsets of F so that for all n, no element of Yn 

is divisible by p modulo the subgroup generated by Umr Y,n, the subgroup 

generated by Un<~, Yn is p-pure in F and for all n there is a set B C_ A of 

cardinality greater than the cardinality of F so that if z, y E B then xi - Yi E Y,, 

where i is the least natural number so that xi ~ yi. In this case by (the proof 

of) Proposition 6 we can find elements an E Yn such that if h: A ----} Z / p Z  is 

a homomorphism which is non-zero on an then h does not lift. There are 2 ~~ 

homomorphisms {hi: A ---} Z/pZ: i < 2 }~~ } such that for all i r j there is n 

such that (hi - hi)(an) r O. So for any i r j ,  hi - h i does not lift to a map to Z 

and hence does not represent 0 in Extp(A, Z). As hi and h i represent different 

elements of Extp(A, Z), [Extp(A, Z)[ = 2 }~~ 

For the second case we assume that the first does not hold. In this case we can 

find a pure finitely generated subgroup Y of F so that for all finite subsets Z of 

F if every element of Z is not divisible by p modulo Y then there is no set B of 

cardinality greater than IF I so that for all x, y E B,  zn - yn E Z where n is the 

least natural number so that zn # yn. We consider the Cohen reals as giving X 

generic functions {ha: a < A} from F to Z/pZ  which are 0 on Y. In this case we 

can repeat the second part of the argument in Theorem 7, since for all a ~ j3, 

h~ - h~ is generic. I 

We now turn to the proof of the main Lemma. Since if A is a non-free cosepa- 

rable group of minimal cardinality, A is JAJ-free, it is enough to show the result 

for all A-free groups A of cardinality A < 2 ~~ By Shelah's singular compactness 

theorem [8], A is regular. We will consider a A-filtration of A (i.e., write A as 

a union of a continuous chain (A~: a < X) of pure subgroups of cardinality less 

than X such that for all a,  if A/A~ is not A-free then A~+I/A~ is not free). 

There will be two cases to consider. The first and easier case is dealt with by the 

following Theorem. 

THEOREM 9: Suppose that IAI = A and A is A-free. Also suppose that (As: a < 

A) is a A-~Itration of A and for a stationary set E,  after adding at least X Cohen 

reais, Extv(Ac,+I/A~,Z ) ~ 0 for a11 a E E. Fhrthermore assume that for a11 



Vol. 81, 1993 EVERY COSEPARABLE GROUP MAY BE FREE 167 

o~ E E the non-vanishing of Extp( A~+l/A~, Z) is witnessed by a function in the 

ground mode/. Then if we add at least A Cohen rea/s, Extp(A, Z) has rank 2 ~. 

Also if weak diamond of E holds then Extp(A, Z) has rank 2 ~, provided that 

for all a E E, Extp(A~+I/A~,Z) ~ O. 

Proof'. This is a fairly routine weak diamond proof. In the case where we add 

Cohen reals the proof can be done using the definable weak diamond (see [5]). In 

order to pursue the main case we will give the proof using the Cohen reals directly. 

As well we will only show that  Extp(A, Z) r 0. (The proof that Extp(A, Z) has 

rank 2 ~ is similar.) Choose a basis X = Ua<xX~ of A/pA so that (under the 

obvious identifications) X~ is a basis of (A~+I/A~)/p(A~+~/A~). For a �9 E, 

let hl~ be a map, in the ground model, from X~ to Z/pZ which does not lift to 

a homomorphism from A~+I/Aa to Z (even in the forcing extension). Let h0~ 

denote the homomorphism which is constantly 0 on X~. The important point to 

notice here is that if f is any homomorphism from A~ to Z then at most one of 

f / p  + ho~ and f / p  + hl~ lifts to a homomorphism of A~+I which agrees with f 

on Aa. Otherwise if f0, f l  were two such liftings then f l  - f0 would contradict 

the choice of hl~. For a ~ E, let h0a and hl,~ be any functions from X,~ to Z/pZ. 

Now we can use A Cohen reals to define a map which cannot be lifted. We 

can assume that the forcing is Fn(A,2,w) and G is a generic function from A to 

2. Let h from X to Z/pZ be ~ < x  ha(~)a. Suppose h is forced to be a lifting 

of h (without loss of generality we can assume that it is forced to be a lifting by 

the empty condition). Since Cohen forcing is c.c.c, we can find a �9 E so that 

hrAa is decided by Gra. So there is l -- 0, 1 and a condition, q, whose domain is 

contained in a such that q forces that h [A~ does not extend to a function which 

lifts hIA~ + hz~. If we choose r so that r extends q and r(a) = I then r forces 

that h is not a lifting of h. This is a contradiction. | 

The last case of the main lemma is the following. 

THEOREM 10: Suppose that A is a regular cardinal and A is a group of cardi- 

nMity A so that A is A-free and there is a A-filtration of A so that for a stationary 

set E and all a �9 E there is a E A~+I \ A~ so that a is in the p-adic completion 

of A~. Then if we add at least A Cohen reals to the universe, Extp(A,Z) r 0. /n 

fact, ]Ext/A,Z)]_ 

Proof: In view of the Theorem 7 (or Theorem 8 for the stronger result) we can 

assume that  the p-adic closure in A of any set of cardinality < A has size < A. 
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Applying Fodor's lemma we get that all but a non-stationary subset of E elements 

of E are of cofinality w. (Otherwise there would be some a so that the p-adic 

closure in A of Aa has cardinality A.) Also by Theorem 7, we can choose the 

filtration so that for all a the p-adic closure in A of Aa is contained in Aa+l. 

Fix a basis X for A/pA. We now redefine the filtration of A. We can assume 

A is the union of a A-filtration where Aa = N~ N A where (Na: a < A) is an 

increasing sequence of elementary submodels of cardinallty less than A of some 

(H(~), e )  with the usual good properties (including X e No). Since the new 

filtration agrees with the old one on a closed unbounded set we can assume E 

consists only of ordinals of cofinality w. 

Since the p-adic closure in A of any set of cardinality less than A has cardinality 

less than A, X has cardinality A. We can assume that the forcing is Fn(X,p,w). 
Let h be the generic function from X to Z/p~,,. Note that the obvious name for 

h is in No. Suppose that h is a lifting of h. 

Choose a limit ordinal 6 E E and let a be an element of A6+1 \ As which is 

in the p-adic closure in A of A6. Choose q which determines h(a), say it forces 

the vahie to be m. Choose a < 6 so that q N N6 = q N Na. Call this restriction 

ql. Next take n maximal so that a is pn-divisible modulo A~. (Since the p-adic 

closure in A of A~ is contained in A6 such an n must exist.) Choose y E Aa such 

that pn[  a - y. Let q2 E Na be an extension of ql which determines h(y). Now 

choose b E A6 so that p,,+l [ a - y - b .  Notice that p'* is the exact power o fp  which 

divides b (even modulo A~). Since pn+l ~ b + A~, if we write b/p" as a (infinite) 

sum of elements of X there will be elements whose coefficients are not divisible 

by p which lie outside A~. Hence there is a condition q3 E N6 extending q2 so 

that q3 forces h(b/p") ~ (m - ~(y)/pn) mod p. Let r be a common extension of 

q3 and q. This gives a contradiction. 

To get the stronger statement on the cardinality of Extp(A, Z) it is enough as 

we did in Theorem 8 to use the Cohen reals to code A generic functions and then 

note that for any two of them their difference is also generic. I 

Finally we cart complete the proof of the main lemma. 

Proof of Lemma 2: The proof is by induction on A < ~. We show that any cosep- 

arable group A of cardinality A is free. Suppose that A is a coseparable group, 

IA] = A < ~ and that the induction hypothesis is true for all p < A. Assume, for 

the sake of contradiction that A is not free. By the induction hypothesis, A is 
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A-free and by the singular compactness theorem [8] A is regular. Let (A~: a < A) 

be a h-filtration of A s.t. Aa pure subgroup E* d~ {a : Aa+I/Aa not free} 

is stationary. There are two main cases: either for a stationary set E C_ )~, 

A~+I/Aa contains a non-zero divisible group or not. In the first case we have 

by Theorem 10 that  for every p there is a counterexample to the vanishing of 

Extp(A, Z). 

The second case divides into two subcases. If there is a stationary set E so that  

for all a E E, Aa+I/Aa is Rl-free not free then by the induction hypothesis and 

the fact that  there are only countably many primes we can choose a stationary 

subset S of E and a prime p so that for all a E S there is a counterexample to the 

vanishing of Extp(Aa+l/Aa,  Z). By absorbing at most A of the Cohen reals into 

the ground model we can assume that A, (An: a < A), E and the counterexamples 

to the vanishing of Extp(Aa+l/Aa, %) are all in the ground model. In this case 

we can apply Theorem 9. 

In the final subcase there is a stationary set E so that for all ~ E E, Aa+I/Aa is 

not Rl-free and contains no non-zero divisible subgroup. So for all a E E there is a 

prime Pa so that there is a counterexample to the vanishing of Extpo (Aa+l /Aa,  Z) 

(see [4] XII.2.7 for a proof of this standard fact). If we choose a prime p and 

S a stationary subset of E so that p~ = p for all a E S, we can again apply 

Theorem 9 (as above). | 

Since we have been able to calculate the pranks  of our groups in all cases we 

have the following theorem on the structure of Ext. 

THEOREM 11: Suppose it is consistent that a supercompact cardinal exists. 

Then it is consistent with either 2 ~~ -- 2 ~ or 2 ~~ < 2 a~ that for any group 

A either Ext(A, Z) is finite or Ext(A, Z) has rank at least 2 ~0. 

It is natural to ask whether the use of the large cardinals is necessary. To show 

that it is, we will give a construction of a coseparable group (which is similar to 

Chase's) from principles whose negation implies consistency of the existence of 

many measurable cardinals. By the principle, *(A, R0), we will mean that there 

exists a family {Si: i < A + } of countable subsets of A such that  for any collection 

I C_ A+ of size A there exists {S*: i E I} where for all i E I Si \ S* is finite and 

for all i ~ j ,  S~ N S~ = 0. (See page 157 of [4] for details.) 

THEOREM 12: Suppose that A is a cardinal, cf(A) = w, 2 x = A +, *(A, R0) holds 

and for all # < A, 2 ~ < A. Then there is a non-free coseparable group of 



170 A.H. MEKLER AND S. SHELAH Isr. J. Math. 

cardinali~y A +. 

Proof." Let {Si: i < A + } be as guaranteed by *(A, R0) and for each i let {s~: n < 

w} be an enumeration of Si. Let Go be the group freely generated by A (=  

Ui<x+ Si). Let {fi: i < A + } enumerate the homomorphisms from Go to Z/pZ as 
p varies over the primes. We will inductively define a strictly increasing chain of 

free groups Ga and homomorphisms ga from Ga+l ~ Z for a < A + so that  ga is a 

lifting o f f~ ,  G~/Go is divisible and for all ~ < a,  g# extends to a homomorphism 

from G~ to Z. (Since Ga/G# is divisible there is at most one extension.) If we 

can do this then G = Ua<~+ G~ is the group required. G is not free. Since G/Go 
is divisible, for every prime p every homomorphism from G to Z/pZ is uniquely 

determined by its restriction to Go. By the construction every homomorphism 

from Go to Z/pZ lifts, so G will be as required. 

It remains to do the construction. We will work inside the Z-adic completion 

of Go so our use of infinite sums will be justified. Choose a function h: A ~ A 

so that the inverse image of any v has cardinality A. For each a we will choose 

x~, 0 ~ z~, 1 so that h(x~,t) = s~ and define x~ = ~"]~,<~n!(x~, 0 - z~,l). The 

group Ga+l will be the pure closure of Ga U {xa).  At limit ordinals we will take 

unions. If we do this then for each a the group Ga will be free but  the group G 

will not be free (see [6] or [4] Theorem VII.2.13). 

Now we make the choices. Suppose we are at stage a. We have already chosen 

{g~: ~ < a} a set of at most A functions. Write a = Un<ww-, where the 

cardinality of each w,  is less than A and w,  C_ w,+l .  Since 2 ]w"] < A, for each 

n we can choose x~, 0 r x~, 1 so that  h(x~,l) = s~ and for all ~ E wn, g~(x~,o) = 
g~(x~,~). Then the homomorphisms extend to the infinite sum (namely xa) since 

each homomorphism is 0 on all but a finite number of the terms being summed. 

Finally we must choose g~. Since Ga+l is free there is some lifting of f~ to G~+I, 

so we can choose g~ as required. | 

As we have mentioned the statement that the hypothesis of the theorem fails 

at all cardinals implies the consistency of many large cardinals. So the use of 

some large cardinal hypothesis was necessary. One might also want to know if 

the continuum needs to be as large as we have made it. The answer to this 

question is no. Assuming the consistency of the existence of a supercompact 

cardinal it is possible to show that it is consistent with 2 A = A + + R2 that every 

coseparable group is free. To prove this result we will divide our effort between 
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a set-theoretic statement and a group theoretic one. First we need to define a 

forcing axiom. By Ax+(Rl-complete forcing) we mean the statement "if Q is an 

Rl-complete forcing and S is a ~-name and IkQ "S is a stationary subset of Wl" 

then for some directed G _C Q the set {a < w~: there is q E G, q Ik a E S} is 

stationary. " 

The point of Ax+(Rl-complete forcing) is to give a reflection principle which 

shows that  certain groups are not R2-free. 

LEMMA 13: Suppose that Ax+(Rl-complete forcing) holds and P is an R~- 

complete forcing. (By R2-comple*e we mean that any directed subset of cardi- 

nali*y R1 has an upper bound.) If  G is P-generic then the following statement is 

true in the generic extension. 

Suppose A is a regular cardinal, A is a group of cardinality A and 

{As: a < A} is a A-filtration of A such that 

E = {a: Aa+I/Aa is not Rl-free} 

is stationary. Then A is not R2-/'ree. 

Proof." Without loss of generality we can assume that the set underlying A is A 

and .4 is a P-name for the group structure on A which is forced by the empty 

condition to be as in the hypothesis. We will show that there is a condition which 

forces that ,4 is not R2-free. Let Q be the product of P with the forcing R which 

adds a generic function / from wl onto A by countable conditions. Let S be the 

Q-name of a subset of wl such that q 1~- a E S if and only if for some fl > a, q 

de te rmines / I f l  and the following holds. Let X be the determined value of the 

image o f / I f l .  Then q determines the group structure of A on X and if Y is the 

determined image o f / r a  then X and Y are given group structures by q and X / Y  

contains a non-free group of finite rank. 

We need to see that S is forced to be stationary. First recall that for any groups 

C and D, where C C_ D, D / C  is not Rl-free if and only if there is a non-free 

subgroup of D / C  of finite rank. Let T be the R-name for ~a• where H is the 

canonical name for an R-generic set. It is enough to see that in V[G], T is forced 

to be stationary. This task is quite easy. Let C be an R-name in V[G] for a closed 

unbounded subset of wl. By taking a new filtration of A we can assume that E 

consists entirely of ordinals of cofinality w. Let r be an element of R, i.e., r is a 

function from some countable ordinal # to A. Choose N an elementary submodel 
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of some appropriate (H(n), E) so that INI < ~ and N N A = A,, for some a E E 

also we can assume that r and everything else we have been talking about are 

elements of N. Choose a countable subgroup X0 of A~+I so that  Xo + A,~/Ac, 

is not free. It is standard to choose an increasing sequence r = r0, r l , . . ,  of 

conditions in N N R where the domain of rn is #n so that there is an increasing 

sequence (un: n < w) of ordinals such that for all n, r ,  It- v,, E C , /~ ,  < v ,+l  

and U,<~rge(rn)  is a subgroup of Ao which contains X0 Iq A~. Let r~ denote 

LJ,<~ rn. Finally let r~+l be an extension of r~ so that the range of r~+l is 

X0 + rge(r~,). Then rw+l forces that U,,<~ un E C N ~'. 

So by Ax+(Rl-complete forcing) there is a directed set H of cardinality R1 

such that {a: there is q E H, q It- a E S} is stationary. Let p be an upper bound 

to the first coordinates of {q: q E H}. By the definition of S, H determines a 

function, f from wl to ~ and a group structure on the range of f which p forces 

to coincide with a subgroup of/1. Further the definition of S and the choice of 

H guarantees that the group structure on the range of f is not free. | 

LEMMA 14: Suppose that A is a regular cardinal, A is not coseparable and 

[AI = A. /s is a A-complete notion of forcing then Q IF A is not coseparable. 

Proof." Without loss of generality we can assume that the set underlying A is )~. 

Suppose p is a prime and h: A ~ Z / p Z  is a function in the ground model which 

does not lift. Suppose that ~ is forced to be a lifting of h. Choose an increasing 

sequence of conditions (q~: a < )~) so that qa determines ~(a). Then f defined 

by f ( a )  = n if q~ It- ~(a) = n is a lifting of h. | 

THEOREM 15: Suppose that the following statements are true: for a11 infni te  

cardinals )~, 2 x = ~+ + Rz; every coseparable group of power less than 2 ~r is 

free; and Ax+(Rl-complete forcing). Then there is a generic extension such that 

(1) cardina/ities and cofnalities are preserved, 

(2) for all infinite cardina/s ~, 2 x = )~+ + lq2, 

(3) every coseparable group is free, 

(4) suppose )~ is a regular cardinal, A is a group of cardinality )~ and {An: o~ < 

)~} is a )~-fltration of A such that E = {a: A~+I/A,~ is not Rl-free} is 

stationary. Then A is not lq2-free. 

Proof: The forcing is an iteration over all regular cardinals greater than or equal 

R2, where the support is an initial segment. The forcing 0x is the Px-name for 
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adding a Cohen subset of A. The result of this forcing we will use is that (>(S) 

holds for all regular A > RI and S a stationary subset of A. Properties (1) and 

(2) are standard. Property (4) has been proved in Lemma 13. It remains to 

verify that every coseparable group is free. Since the forcing is w2-complete, we 

have, by Lemma 14, that every coseparable group of cardinaiity at most R1 is 

free. Suppose that A is a non-free coseparable group of cardinality A where A 

is minimal. (Note that A > R1.) We can assume that the set underlying A is 

A. By forcing with the initial segment which adds the subsets to/~ for/~ _< A, 

we can assume we are working in a universe satisfying (1), (2), (4) where every 

coseparable group of cardinaiity less than A is free, A is a non-free A-free group 

and (>(S) holds for every stationary subset of A. Choose a A-filtration (Aa: a < A) 

of A. The filtration should be chosen so that A~,+I/Aa is not free if A/A~ is not 

)~-free. 

Let E = {a: Aa+I/Aa is not Rl-free}. Then E is not stationary, since by 

(4), if E were stationary A would not be R2-free. By the inductive hypothesis, 

{a: Extp(A~+l/Aa,Z) r 0} is stationary for some p. (In fact, for all p.) Hence 

by Theorem 9 and the fact that ~(S)  holds for all stationary subsets of A we are 

done. | 

It remains to show the hypothesis is consistent. 

THEOREM 16: Suppose it is consistent that a supercompact cardinal exists then 

it is consistent that: for all infinite cardinals A, 2 ~ = A + + R2; every coseparable 

group of power less than 2 ~r176 is free; and Ax+ (Rl-complete forcing). 

Proof." Since for any R1-complete forcing P, there is some cardinal A so that P x 

Fn(wl, A, wl) is equivalent to Fn(wl, A, wl ) it is enough to consider posets of the 

form Fn(wl, A,wl) in the verification of Ax+(Rl-complete forcing). We will call 

Fn(wl, A, wl) the forcing for collapsing A to wl. Suppose that ir is supercompact. 

We can assume that GCH holds in the ground model. Let f : tr -r Ir be a 

function such that for any # and A there is some M and an elementary embedding 

of j :  V ~ M so that j(f)(~r = # and AM C_ M. The forcing is an iteration 

(?i, Qi: i < x), where if i = 2j,  Qi is the Pi-name for the forcing collapsing f ( j )  

to wl and for i = 2j + 1, Qi is the forcing for adding R1 Cohen reals. A function 

p is in P~ if for all i, pri Ik p(i) E O,J, the support o fp  intersect the even ordinals 

is countable and the support of p intersect the odd ordinals is finite. 
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It is standard to verify that Ax+(R1-comp]ete forcing) is forced to hold. As well 

ir is forced to be either R1 or R2. We will show that RI is preserved by this forcing 

and that every coseparable group of cardinality wl is free in the forcing extension. 

(Notice that the first statement is implied by the second since otherwise CH would 

hold and so there would be a non-free coseparable group of cardinality RI. In fact 

we will verify that wl is preserved as part of the verification that all coseparable 

groups of caxdinality RI are free.) We will only sketch the proof and leave details 

to the reader. We can reconstruct the iteration differently. For any i, let Ri 

be the finite support iteration of ((~2j+I: 2j + 1 < i). The forcing P~ can be 

rewritten as R~ * S~, where Si is the countable support iteration of (~)2j: 2j < i). 

We claim that if H is an R~-generic set and G is P~-generic, G N R~ = H then 

V[H] and V[G] have the same countable sets of ordinals. To show this we show 

by induction on i, that V[Hi] and V[Gi] have the same countable sets of ordinals. 

Here Hi (respectively, Gi) denotes the restriction of H (respectively, G) to Ri 

(respectively, Pi). In particular we have from the induction hypothesis that for 

any ,~, Fn(wl, .X,wl) v[H'] = Fn(wl, ~,wl) v[G']. So we can in the forcing replace 

Q2j by the R21-name for the forcing for collapsing f( j)  to wl, call this name Q~i" 

Any element of Q~y H's can be of the form {{(&,~)} x Aa~: a < 7,/~ < f ( j )}  

where 7 < r for all a and fl Aa~ C_ R2j, for all a, fl, r, i f p  E Aa~ and 

q E Aa,  then p and q are incompatible, and for all a, [.Jfl < f( j)Aa a contains 

a maximal antichain. Call such names pleasant. Notice that any pleasant name 

is forced by the empty condition to be a function with countable domain from 

wl to A. As well, if q is any name which is forced by the empty condition to be 

such a function then there is a pleasant name which the empty condition forces 

to extend q. The important property that we will use is that  the union of a 

countable chain of pleasant names which is forced by the empty condition to be 

increasing in stength is again a pleasant name. With this observation in hand, we 

can prove the claim. There are two cases to consider, the successor case and the 

limit case. We will just do the limit case as the successor one is similar. Suppose 

i is a limit ordinal and ~ is a Pi-name for a function from w to the ordinals. It 

is enough to show that there is a name ~ in Si so that the empty condition in 

Ri forces that g determines the value of ~. By the discussion there is a sequence 

(~.: n < w) such that for all n and 23' in the support of .~., g,,(2j) is a pleasant 

name, the empty condition forces that ~, determines the value of ~(n) and for all 

n and 2j in the support of g,,, the empty condition (in R2j) forces that ~,+~(2j) 
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extends ~,(2j) .  Then $ can be taken to be the coordinatewise union of the ~,. 

Similarly, we can prove the following fact. 

Suppose ~ is an P~-name for a function from wl to wl. Then there 

is a sequence (~a: a < wl) of elements of S~, so that the empty 

condition in N~ forces that the sequence is increasing and that $~ 

determines .~ up to a. 

With this fact in hand we can prove that all coseparable groups of cardinality R1 

are free. Suppose A is a non-free coseparable group in the generic extension. By 

doing an initial segment of the forcing we can assume that A is in the ground 

model. By Lemma 2, we know that A is not coseparable in the generic extension 

by R~. Let h : A ~ Z /pZ be a function which does not lift. By adding some 

of the Cohen reals to the ground model we can assume that h is in the ground 

model. Without loss of generality, we can assume that the set underlying A is Wl. 

Suppose that .~ is forced to be a lifting of h to Z. Let (g~: a < Wl) be as above. 

Then if H is R~-generic, H together with the sequence determines a function, ~0 

from A to Z. Since the value of any 3 elements is determined by some condition, 

this function must be a homomorphism which lifts h. But ~0 is in V[H] which 

contradicts the choice of h. 

3. 2~r176 m a y  i m p l y  f ree  

In [1] it is shown that if r is a supercompact cardinal and tr Cohen reals are 

added to the universe then 2~r176 implies free. In order to prove Theorem 4, 

we need to know that if we begin with a supercompact cardinal tr and first add 

~+ Cohen subsets of wl and then add K subsets of w, then 2~r176 implies free. 

The proof is relatively standard but we will present it below since we need the 

corollary. 

LEMMA 17: Suppose A is a non-free group. Then in any extension of the universe 

which preserves cofinalities and stationary sets, A is non-free. 

Proof: Consider such an extension and suppose that A is any non-free group. By 

restricting to a non-free subgroup of A we can assume that A is A-free and the 

cardinality of A is A or A is countable. By the singular compactness theorem A is 

regular. The theorem is by induction on A. By Pontryagin's criterion, being non- 

free is absolute upwards for countable groups. (More generally since satisfaction 
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of sentences in L~,,~, is absolute being non-free is absolute upwards for countable 

structures in any variety in a countable language.) 

Suppose we know the result for all ~ < A and A is A-free, non-free and of 

cardinality A. Then there is a A-filtration (An: o~ < A) so that for a stationary 

set E, A~+I/A~ is not free for all a 6 E. By induction we know in the extension 

A~+I/A~ is not free. Hence A is not free in the extension. | 

The lemma above applies in the more general situation of a variety in a count- 

able language. 

LEMMA 18: Suppose that GCH is true in the ground model and let 

P = Fn(I ,2 ,wl)  x f n ( J ,  2,w). 

Suppose Q is Fn(/~,2,wl) x Fn(p,2,w) where #,p > RI. If G is Q generic and 

K = V[G], then in K, P is R2-c.c. and preserves stationary sets. 

Proof: It is easy to show that P is R2-c.c. in K,  since Q x P is R2-c.c. over 

the ground model. But for amusement, we will give the proof only with the 

assumption that K is an extension by an R2-c.c. notion of forcing. Since K is an 

extension by an R2-c.c. poser, for any large enough regular ~ there is a club C of 

subsets of I-I(~) such that for all N 6 C, G is generic over N. Suppose now that 

A is a maximal antichain in P (in K)  and .4 is a name for A. Choose g -< H(,~) 

of cardinality R, so that N is closed under sequences of length w, .4 6 N and 

G is generic over N. We will show that any element of P is compatible with 

an element of N[G] N A. Since N[G] has cardinality R,, this suffices. Consider 

any element (pl, p2) 6 P. Since N is closed under countable sequences, (pl I(I (] 

N),pa [(J N N)) = q is in N. Hence q is compatible with some element r of 

N[G] r A. Finally r and (p,,p2) are compatible. 

All that remains to see is that P doesn't destroy any stationary subsets of wl 

(in K).  Let S be any subset of w, in K which is forced by the empty condition in 

P to be non-stationary. Suppose that C 6 K P is a club subset of Wl disjoint from 

S. Since Q is R2-c.c. we can choose a name S for S which uses only Fn(L, 2,wi) x 

Fn(T,2,w) where the cardinality of L,T  is R1. Moreover, we can have a name 

for C which uses only Fn(L,2,wl)  x Fn(T,2,w) x Fn(I ' ,2 ,wl)  x fn ( J ' , 2 ,w) ,  

for some I '  C_ I,  J '  C_ J of the size < R1. Since #, p > R1 we can think of C as 

an Fn(/~, 2, wl) x Fn(p, 2, w)-name. Then C[G] 6 g contradicts stationarity of S. 
I 
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THEOREM 19: Suppose n is a supercompact cardinal, V satis~es CH and P = 

Fn(/~, 2, to1) x Fn(p, 2, to), where/~, p > R1. Then P forces that every n-free group 

is free. 

Proof: Suppose that G is F-generic and A in V[G] is n-free. Let A = IAI. Let 

,4 be a name for A. Choose an embedding j : V ~ M so that j (n )  > A and M 

is closed under sequences of length max{~;,/~, A, p}. L e t / ' / b e  a j(F)-generie set 

which contains j ' G .  Notice that  A is isomorphic to the interpretation of j ' , 4  in 

M[i"G] and M[//] .  (We denote this image as j"A.)  If A is not free then j " A  

is not free in Mb'"G] and hence by the two lemmas above also not in M[//]. 

However i extends to an elementary embedding of V[G] into M[H]. So j (A)  is 

j(n)-free and hence in M[H], j " A  is free. | 

COROLLARY 20: 1~ it iS consistent with ZFC that a supercompact cardinal ex- 

ists then both of the statements "every 2 R~ group is free and 2 ~~ < 2 ~ "  and 

"every 2~o-free group is free and 2 s~ = 2 R*" are consistent with ZFC. Fhrther- 

more, i f  it is consistent that there is a supercompaet cardinal then it is consistent 

that there is a cardinal n < 2 l~t so that i f  n Cohen reals are added to the universe 

then every n-free group is free. 
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